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Abstract. It is shown that next-nearest-neighbor interactions may lead to unusual paramagnetic or ferro-
magnetic phases which physical content is radically different from the standard phases. Actually there are
several particles described by the same quantum field in a manner similar to the species doubling of the
lattice fermions. The renormalizability of the theory is proven at the one loop level.

1 Introduction

The most practical way to build a physically relevant
quantum field theory starts with a choice of a suitable
Lagrangian. More than the Hamiltonian formalism, the
Lagrangian enforces both the Lorentz invariance and the
symmetry principles. Yet the difficulty is the choice of the
terms to include in the Lagrangian allowed by the sym-
metries. This choice has been dictated for a long time by
the principle of renormalizability. Solely renormalizable
quantum field models were considered as sensible physical
theories in particle physics. The need of infinitely many
coupling constants to cancel the UV divergences gener-
ated in the framework of the perturbation expansion made
the non-renormalizable theories be rejected. Today any re-
alistic quantum field is considered as an effective theory
valuable only in a given range of energy. In this context
renormalizability is no more considered as a fundamental
physical requirement. It may be possible that the quan-
tum field theories we are familiar with, are low energy
approximations of a theory that may not even be a field
theory.

Any effective theory includes both renormalizable and
non-renormalizable interactions. But the characterization
of the second ones was modified by looking into their im-
portance at low energy. There, we expect they are highly
suppressed. So non-renormalizable interactions may be ex-
cluded from the start because their influence on the dy-
namics decreases with the physical energy scale; i.e., they
do not change the universality class of the model, but
their influences grow when we consider the high energy
dynamics. These non-renormalizable interactions are then
interpreted as the influence of some degrees of freedom
relevant at higher energy on the low energy physics. For
instance, the heavy particle perturbative elimination leads
to an effective Lagrangian for the light particles contain-
ing an infinite number of non-renormalizable interactions
expressed in terms of the light degrees of freedom.

Consider as an example a single scalar component La-
grangian with higher derivative interactions of the form
ϕ✷nϕ. We follow the discussion of Steven Weinberg’s book
[1]. Such a term make a contribution of the form (q2)n to
the free propagator. Thus it would not have the simple
pole expected but n such poles usually at complex value
of q2 [2]. They could be interpreted as particles with neg-
ative norm which violate unitarity [3]. Following Wein-
berg’s argument if this non-renormalizable operator has a
coefficient of order M−2(n−1) (M � m), then the extra
poles are at q2 of order M2 and we can not neglect all
the other non-renormalizable interactions. In other words
the higher derivative terms are non-renormalizable inter-
actions generated by the elimination of a particle of mass
M . It is then difficult to describe the physics beyond the
heavy particle threshold without this particle as a dynam-
ical degree of freedom. To due this job without the true
degrees of freedom we precisely need the fine tuning of an
infinity of non-renormalizable interactions. Therefore the
truncation of the effective Lagrangian to terms of the form
ϕ✷nϕ is a poor approximation.

In this letter we consider a one component scalar field
theory with higher derivative interactions regularized on a
lattice. Usually, a lattice or a continuum theory differ only
by non-renormalizable interactions leading to the same
low energy physics. But it is well known that in some
cases, singular configurations or topological defects at the
scale of the cutoff may appear on the lattice, polluting
the numerical simulation. Following the previous discus-
sion the usual attitude is to suppress such configurations
by improving the action [4] in order to recover the same
continuum limit than in renormalized perturbation the-
ory. In the present letter we consider a model with a next-
nearest-neighbor interaction and choose to vary the dy-
namics close to the cutoff scale to look if this may change
the physics at large distance. Then at first sight, it seems
that the preceding reasoning would forbid such a point of
vue: the true degrees of freedom or all non-renormalizable
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interactions are needed at the scale of the cutoff. This is
true if we our theory is an effective low energy theory. But
if it appears to be renormalizable, our model is correct at
all energy scales and we don’t need to include all other
non-renormalizable interactions in the action.

Keep in mind that the classification of the interactions
is usually done by simple dimensional analysis (power
counting arguments in perturbation theory) but that non-
perturbative study may invalid this classification. For ex-
ample, the formation of small positronium bound states
(of the size of the cutoff) in strong massless QED, gen-
erates by taking into account the anomalous dimensions,
new relevant (renormalizable) operators. The condensate
of these bound states breaks the chiral symmetry. The IR
feature of the resulting vacuum are thus modified com-
pared to the perturbative one [5], [6].

Our goal is to look if continuum physics exists beyond
the class of traditionally renormalizable theories. By con-
sidering our theory on a lattice we find a free propaga-
tor containing many minima (in euclidean space). These
ones are similar to the doubling fermions and will be inter-
preted as different particles, some of them having different
masses. By a particular fine tuning of the coupling con-
stants, we find a renormalizable theory at least at the one
loop level. We also introduce a 16-components field Φα,
in such a manner that each component is responsible of
the excitations around one minima. In this manner each of
these excitations is now interpreted as low energy excita-
tions of different fields. This formalism allows us compute
the one loop effective potential.

The present letter is a generalization of a preceding
work published in two papers [7] where the accent was
put on the breakdown of the Poincaré symmetry by the
second pole of a propagator containing two minima, lead-
ing to an antiferromagnetic vacuum. The lattice is a good
regulator since contrary to the other ones it regularizes
the quantum fluctuations as well as the saddle point. This
may be important if non-homogeneous saddle point are
present. In the present paper we will work with a trivial
vacuum, the generalization to a ferromagnetic one being
trivial.

2 The model

We consider the following single component scalar field
action in a d dimensional lattice:

S [ϕ(x)] =
∑

x

{
− 1

2
ϕ(x)

[
Aϕ(x)

+
∑

µ

(Jϕ (x+ eµ) +Kϕ (x+ 2eµ))
]}

+
∑

x

(
m̃2

2
ϕ(x)2 +

λ

4!
ϕ(x)4

)
(1)

where the coefficients A, J , K are chosen to be positive.
The theory describes a paramagnetic (P) or a ferromag-
netic (F) phase. A negative sign for J leads to an antifer-

romagnetic phase with the breaking of the Lorentz invari-
ance. We don’t want to discuss such a situation here. It
is well known from renormalization group argument that
next-nearest-neighbor ferromagnetic coupling are irrele-
vant for the description of the P or F phase at least near
the phase transition. In particle physics language those
operators have a decreasing influence on the dynamics as
we move away from the UV scaling regime towards the
physical energy scales, in other words they do not change
the universality class of the model. In a P or F phase the
important modes are the modes near zero. In particular
they are responsible for the instability leading to a phase
transition. It will be shown below that for this model all
the relevant modes lie in fact around each edge of the Bril-
louin zone. These fast fluctuating modes are then relevant
as precursor of a phase transition to an antiferromagnetic
phase. We aim to study the influence of these modes in
the continuum limit. As usual, the fluctuations around a
minimum of the propagator are interpreted as particle like
excitations. So we will show that our model describes the
dynamics of 2d particles. This is similar to the fermion
doubling on the lattice except that our particles are not
degenerates.

3 The elementary excitations

The particles in the mean-field approximation are given
by the free propagator:

G−1 (p) = −A+ m̃2 − 2

(
J
∑

µ

cos pµ +K
∑

µ

cos 2pµ

)
(2)

which has the particularity to have 2d minima in each edge
of the Brillouin zone if:

K >
J

d
(3)

It’s advantageous to divide the Brillouin zone

B = {pµ, |pµ � π|} , (4)

into 2d restricted zones,

Bα =
{

|pµ − Pµ (α)| � π

2

}
(5)

whose centers are at

Pµ (α) = πnµ (α) , (6)

where nµ (α) = 0, 1 and the index 1 � α � 2d is given by

α = 1 +
d∑

µ=1

nµ (α) 2µ−1. (7)

The propagator for the zone Bα is G−1
α (q) = G−1(P (α)+

q). It turns out that all the Brillouin zones α = 1..2d,
contain particle like excitations.
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In particular:

G−1
1 (0) = −A− 2d(J +K) + m̃2 (8)

So we chose arbitrary: A = −2d(J+K). If we assume that
the mass term is finite, the free propagator in the limit
a → 0 is (with the lattice spacing explicitly reintroduced):

G−1
α (p) = Z(α)p2 +m2(α) +O(a2p4) (9)

with the mass given by:

m2(α) = m2 +
Jd

a2

d∑
µ=1

nµ(α) (10)

where m2 = m̃2

a2 . The condition of finiteness of the mass
terms m2(α) leads to a non-usual renormalization of the
coupling constant J. That is, we must choose J = µ2a2

where µ2 has the dimension of a mass and is kept finite.
Otherwise all the particles except the one in the first Bril-
louin zone will decouple. In this case we recover the usual
phase where only the modes around zero are relevant. It is
trivial to see that the classical continuum limit is the su-
perposition of two uncoupled sub-lattices because J = 0 in
the limit a → 0. This tree level renormalization J = µ2a2

may appear unusual. However remember that only the
physical masses and coupling constants have to be cut-off
independent, not the bare parameters.

We also choose K = 1
d to get Z(α) = 1 in the contin-

uum limit. The appearance of the new minima is precursor
of an antiferromagnetic instabilities. That is, configura-
tions with some antiferromagnetic directions are
metastable states in the paramagnetic phase.

With this choice for the couplings we will prove at the
one loop order that our model describes a well defined
renormalizable field theory with 2d interacting particles.

4 The perturbation expansion

We follow the standard procedure by computing the dif-
ferent 1-PI function at the one loop level in d = 4. As the
initial action has only one field, it is not trivial that the
UV divergencies may be cancelled only by one mass and
one coupling counter term (it’s easy to check the wave
function renormalization constant is δZ = 0 at the one
loop order).

We start with:

Γ 2(k,−k) = G−1(k) +
g

2

∫
B
G(p)

= G−1
α (k̃) +

g

2

∑
α

∫
B1

Gα(p̃) (11)

with k = k̃ + P (α), and k̃ ∈ B1. As usual we replace
the bare coupling by the renormalized one. The physical
renormalized mass is:

m2 = Γ 2(0) = m2 + δm2 +
g

2

∑
α

∫
B1

Gα(p̃) (12)

which defines the mass counter term, and make the two
point 1-PI function finite. With this choice the other phys-
ical masses of the different particles are define unambigu-
ously by:

m2(α) = Γ 2(P (α)) = m2 + µ2d

d∑
µ=1

nµ(α) (13)

The renormalization of the coupling constant is more in-
volved. Consider:

Γ 4(k1, k2, k3, k4)

= g + δg − g2

2

∫
B
G(p)G(k1 + k2 + p)+ Perm (14)

= g + δg − g2

2

∑
α

∫
B1

Gα(p̃)Gα(k1 + k2 + p̃)+ Perm

The renormalized coupling constant is defined as usual as
g = lim

a→0
Γ 4(0) so that the counter term is:

δg =
3g2

2

∑
α

lim
a→0

∫
B1

Gα(p̃)2

=
3g2

2

(∑
α

(
1

16π2 ln
Λ2

m2(α)
− 1) + F

)
(15)

where F is a finite part due to the lattice structure, inde-
pendent of m2(α) (for a detailed analysis of such integrals,
see [7]). It’s clear that when all the external momenta be-
long to P (16), we have Γ 4(P (16)) = Γ 4(0) = g. In the
other cases, it is not yet clear that the unique counter
term (15) remove the UV divergencies. In fact for the
renormalization of the other coupling constant we have
to compute integrals of the following form where α is an
implicit function of α:∑

α

lim
a→0

∫
B1

Gα(p̃)Gα(p̃)

=
∑
α

∫
B1

dp

(p2 +m2(α))(p2 +m2(α))
+ F

=
∑
α

1
16π2

(
ln

Λ2

m2(α)
− m2(α)
m2(α) −m2(α)

× ln
m2(α)
m2(α)

)
+ F (16)

where the finite term F is the same as above [7]. Then
it is clear that for every external momenta at the edge of
the Brillouin zone, the choice of the counter term (15) will
remove the UV divergencies. As an example consider the
following vertex function:

Γ 4(P (16), P (16), 0, 0)

= g + δg − 2g2

2

∫
B
G(p)G(P (16) + p)

−g2

2

∫
B
G(p)G(−p)
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= g + δg − 2g2

2

∑
α

∫
B1

Gα(p̃)G17−α(p̃)

−g2

2

∑
α

∫
B1

Gα(p̃)2 (17)

Or∑
α

lim
a→0

∫
B1

Gα(p̃)G17−α(p̃)

=
∑
α

lim
a→0

∫
B1

Gα(p̃)2 −
∑
α

1
16π2

m2(17 − α)
m2(α) −m2(17 − α)

× ln
m2(α)

m2(17 − α)
(18)

and finally:

lim
a→0

Γ 4(P (16), P (16), 0, 0)

= g + δg − 3g2

2

∑
α

lim
a→0

∫
B1

Gα(p̃)2

−
∑
α

1
16π2

m2(17 − α)
m2(α) −m2(17 − α)

ln
m2(α)

m2(17 − α)
(19)

which with the help of (15) defines another renormalized
coupling constant.

5 The Beta function

We deduce the following beta function from the choice of
the counter term of the coupling constant:

β(g) = m
∂g

∂m

∣∣∣∣
λ0,Λ

= 6g2
∑
α

m2

m2(α)
(20)

which gives the flow for the coupling constant:

g(Λ) =
λ(Λ0)

1 − 3λ
16π2

∑
α

( m2

m2(α) ) ln Λ
Λ0

(21)

Remark that the sign of the beta function may be nega-
tive if µ2 < 0. But a careful look shows that this happens
only when m2 < −16µ2 where the trivial vacuum is insta-
ble against the antiferromagnetic one. So we must start
again the computation by considering fluctuations around
this antiferromagnetic vacuum. In this case we found the
same beta function. It is then clear that our theory will be
trivial, or in other words the coupling constant is a non-
renormalizable one, as for each scalar theory in d = 4.

6 Effective potential

To deduce the universality class of the model the simplest
way is to introduce a formalism allowing us to compute the

one loop effective potential. It is defined as the generator
function for the 1PI function as:

Veff (Φ) =
∞∑

n=0

1
n!

∑
α1,...,αn

Φα1 ...Φαn
Γ (n)(P (α1), ..., P (αn))

(22)
where we have introduced a 16-components field Φα, in
such a manner that the α-th component will be responsible
of the excitations in Bα. In this manner each of these
excitations is now interpreted as low energy excitations
of different fields. Thus the Feynman rules are those of a
16-component field with the matrix propagator G where
Gα,β(p) = δα,βG(P (α) + p), and each external line with
p = 0 is represented by the insertion of the matrix:

Φ =
2d∑

α=1

γαΦα (23)

where:

γα
ρ,σ =

d∏
µ=1

δσµ+αµ−ρµ(mod 2) , 0 (24)

takes care of the change of particle type at each vertex.
Then for example at one loop:

1
4!

∑
α1,...,α4

Φα1 ...Φα4Γ
(4)(P (α1), ..., P (α4)

=
g2

4

∑
α1,...,α4

Φα1 ...Φα4

∫
B1

dpTr[G(p)γα1

×G(p)γα2G(p)γα3G(p)γα4 ]

=
g2

4

∑
α1,...,α4

∫
B1

dpTr[G(p)ΦG(p)ΦG(p)ΦG(p)Φ] (25)

Taking advantage of the matrix formalism introduced
above we obtain:

V
(1)
eff (Φ) =

1
2

∫
p� π

2a

ddp

(2π)d
tr ln

(
G−1 +

g

2
Φ

2
)

(26)

the tree level -part of the effective potential is:

V (0)(Φ) =
∑
α

(G−1
α + δm2)Φ2

α +
g + δg

4!

×
∑

α

Φ4
α + 3

∑
α,β

Φ2
αΦ

2
β

 (27)

It is now easy to check that the model defined by the
action (1) lies in the same universality class as a 16 com-
ponents scalar field theory defined with only one mass
counter term and one coupling constant counter term
whose Lagrangian is:

L =
1
2

∑
α

∂µϕα∂
µϕα +

∑
α

m2
α + δm2

2
ϕ2

α +
g + δg

4!

×
∑

α

ϕ4
α + 3

∑
α,β

ϕ2
αϕ

2
β

 (28)
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Nevertheless an important difference is that the masses of
the particles in the model (1) are related to each other
and are then not arbitrary as in the model (28).

Note that it is possible to remove most of the modes
in the continuum limit by adding a diagonal interaction.
In this case the theory describes a low energy dynamic of
the two components scalar theory [7].

The analysis of the present paper may be applied to
other models too. For example consider the following vari-
ant of the XY model defined by the action:

S =
1

2T

∑
i

∑
µ

{α cos(θi − θi+µ) + γ cos(θi − θi+2µ)}

This theory will describe the usual excitations, that is the
spin waves, the vortex as well as the doubling of the modes
(similar to rotons excitations). It would be interesting to
study the influences of theses modes on the phase transi-
tions.

7 Conclusion

We have studied a one component scalar field theory in a
d dimensional lattice with next-nearest-neighbor interac-
tion at the one loop level. One can identify 2d particle like
excitations, and then eliminate the one-loop divergencies
by an appropriate fine tuning of the bare parameters. One
should emphasize that the renormalized continuum theory
exists only when the regulator is taken into account both

at the tree (through the free propagator) and the one loop
levels in a systematical manner. The resulting theory is,
equivalent to an usual renormalizable 2d scalar field the-
ory at low energy, but to be really conclusive the proof
must be extended to higher orders in the loop expansion.
It is also interesting to pursue this work by adding com-
peting interactions in order to study if they may lead to
continuum physics beyond the class of traditionally (per-
turbative) renormalizable theory.
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